# -*- coding: utf-8 -*-
# ELEKTRONN - Neural Network Toolkit
#
# Copyright (c) 2014 - now
# Max-Planck-Institute for Medical Research, Heidelberg, Germany
# Authors: Marius Killinger, Gregor Urban
import numpy as np
class _Layer(object):
def __init__(self, input, filter=1, pool=1, stride=1, mfp=True):
self.out = input - filter + 1
if self.out <= 0:
raise ValueError('CNN has no output for layer with input', input)
self.stride = stride
rest = self.out % pool
self.pool_out = self.out // pool
if pool > 1:
if mfp and rest != 1:
raise ValueError('MFP fails for layer with input', input)
elif not mfp and rest > 0:
raise ValueError('Uneven Pools for layer with input', input)
def setfield(self, field):
self.field = field
self.overlap = field - self.stride
class _CNNCalculator(object):
def __init__(self, filters, poolings, desired_input, MFP, force_center,
desired_output):
self.mfp = MFP
self.fields = self.getFields(filters, poolings)
fow = self.fields[-1]
if fow % 2 == 0:
if force_center:
raise ValueError('Receptive Fields are not centered with field of view (%i)' % fow)
else:
print 'WARNING: Receptive Fields are not centered with even field of view (%i)' % fow
self.offset = float(fow) / 2
valid_inputs = []
valid_outputs = []
for inp in xrange(2, 5000):
try:
self.calclayers(inp, filters, poolings, MFP)
valid_inputs.append(inp)
valid_outputs.append(self.out[-1])
except:
pass
if desired_output is not None:
if desired_output in valid_outputs:
i = valid_outputs.index(desired_output)
input = valid_inputs[i]
else:
valid_outputs = np.array(valid_outputs)
input = valid_outputs[valid_outputs <= desired_output][-1]
print "Info: output size requires input>1200, next smaller output (%i) is used" % input
valid_outputs = list(valid_outputs)
i = valid_outputs.index(desired_output) # input corresponding to that output
input = valid_inputs[i]
elif desired_input in valid_inputs:
input = desired_input
elif desired_input is None:
input = valid_inputs[-1]
else:
valid_inputs = np.array(valid_inputs)
if desired_input < valid_inputs[0]:
input = valid_inputs[0]
print "Info: input (%i) changed to (%i) (size too small)" % (desired_input, input)
else:
input = valid_inputs[valid_inputs <= desired_input][-1]
print "Info: input (%i) changed to (%i) (size not possible)" % (desired_input, input)
valid_inputs = list(valid_inputs)
self.valid_inputs = valid_inputs
self.calclayers(input, filters, poolings, MFP)
self.input = input
self.pred_stride = self.layers[-1].stride
for lay, field in zip(self.layers, self.fields):
lay.setfield(field)
self.overlap = [l.overlap for l in self.layers]
def calclayers(self, input, filters, poolings, mfp):
stride = poolings[0]
self.layers = [_Layer(input, filters[0], poolings[0], stride, mfp=mfp[0])]
for i in xrange(1, len(filters)):
stride = np.multiply(stride, poolings[i])
lay = _Layer(self.layers[i - 1].pool_out, filters[i], poolings[i], stride, mfp[i])
self.layers.append(lay)
self.pool_out = [l.pool_out for l in self.layers]
self.out = [l.out for l in self.layers]
self.stride = [l.stride for l in self.layers]
def __repr__(self):
ls = self.pool_out[::-1] if not isinstance(self.pool_out[0], list) else zip(*self.pool_out)[::-1]
out = self.out[::-1] if not isinstance(self.out[0], list) else zip(*self.out)[::-1]
fields = self.fields[::-1] if not isinstance(self.fields[0], list) else zip(*self.fields)[::-1]
stride = self.stride[::-1] if not isinstance(self.stride[0], list) else zip(*self.stride)[::-1]
overlap = self.overlap[::-1] if not isinstance(self.overlap[0], list) else zip(*self.overlap)[::-1]
s = "Input: "+repr(self.input)+"\nLayer/Fragment sizes:\t"+repr(ls)+"\nUnpooled Layer sizes:\t"+repr(out)+\
"\nReceptive fields:\t"+repr(fields)+"\nStrides:\t\t"+repr(stride)+\
"\nOverlap:\t\t"+repr(overlap)+"\nOffset:\t\t"+repr(self.offset)+".\nIf offset is non-int: output neurons lie centered on input neurons,they have an odd FOV\n"
return s
def getFields(self, filter, pool):
def recFields_helper(filter, pool):
rf = [None] * (len(filter) + 1)
rf[-1] = 1
for i in xrange(len(filter), 0, -1):
rf[i - 1] = rf[i] * pool[i - 1] + filter[i - 1] - 1
return rf[0]
fields = []
for i in xrange(1, len(filter) + 1):
fields.append(recFields_helper(filter[:i], pool[:i]))
return fields
class _multiCNNCalculator(_CNNCalculator):
""" Adaptor Class to unify multiple CNNCalculators"""
def __init__(self, calcs):
self.fields = []
self.offset = []
self.valid_inputs = []
self.input = []
self.pred_stride = []
self.stride = []
self.pool_out = []
self.out = []
self.overlap = []
for c in calcs:
self.fields.append(c.fields)
self.offset.append(c.offset)
self.valid_inputs.append(c.valid_inputs)
self.input.append(c.input)
self.pred_stride.append(c.pred_stride)
self.overlap.append(c.overlap)
self.pool_out.append(c.pool_out)
self.out.append(c.out)
self.stride.append(c.stride)
[docs]def CNNCalculator(filters,
poolings,
desired_input=None,
MFP=False,
force_center=False,
desired_output=None,
n_dim=1):
"""
Helper to calculate CNN architectures
This is a *function*, but it returns an *object* that has various architecture values as attributes.
Useful is also to simply print 'd' as in the example.
Parameters
----------
filters: list
Filter shapes (for anisotropic filters the shapes are again a list)
poolings: list
Pooling factors
desired_input: int or list of int
Desired input size(s). If ``None`` a range of suggestions can be found in the attribute ``valid_inputs``
MFP: list of int/{0,1}
Whether to apply Max-Fragment-Pooling in this layer and check compliance with max-fragment-pooling
(requires other input sizes than normal pooling)
force_center: Bool
Check if output neurons/pixel lie at center of input neurons/pixel (and not in between)
desired_output: int or list of int
Alternative to ``desired_input``
n_dim: int
Dimensionality of CNN
Examples
--------
Calculation for anisotropic "flat" 3d CNN with MFP in the first layers only::
>>> desired_input = [211, 211, 20]
>>> filters = [[6,6,1], [4,4,4], [2,2,2], [1,1,1]]
>>> pool = [[2,2,1], [2,2,2], [2,2,2], [1,1,1]]
>>> MFP = [1, 1, 0, 0, ]
>>> n_dim=3
>>> d = CNNCalculator(filters, pool, desired_input, MFP=MFP, force_center=True, desired_output=None, n_dim=n_dim)
Info: input (211) changed to (210) (size not possible)
Info: input (211) changed to (210) (size not possible)
Info: input (20) changed to (22) (size too small)
>>> print d
Input: [210, 210, 22]
Layer/Fragment sizes: [[102, 49, 24, 24], [102, 49, 24, 24], [22, 9, 4, 4]]
Unpooled Layer sizes: [[205, 99, 48, 24], [205, 99, 48, 24], [22, 19, 8, 4]]
Receptive fields: [[7, 15, 23, 23], [7, 15, 23, 23], [1, 5, 9, 9]]
Strides: [[2, 4, 8, 8], [2, 4, 8, 8], [1, 2, 4, 4]]
Overlap: [[5, 11, 15, 15], [5, 11, 15, 15], [0, 3, 5, 5]]
Offset: [11.5, 11.5, 4.5].
If offset is non-int: floor(offset).
Select labels from within img[offset-x:offset+x]
(non-int means, output neurons lie centered on input neurons,
i.e. they have an odd field of view)
"""
assert len(poolings) == len(filters)
if MFP is False:
MFP = [False, ] * len(filters)
if n_dim == 1: #not hasattr(filters[0], '__len__') :
return _CNNCalculator(filters, poolings, desired_input, MFP, force_center, desired_output)
else:
if desired_input is None:
desired_input = (None, ) * n_dim
elif not hasattr(desired_input, '__len__'):
desired_input = (desired_input, ) * n_dim
if desired_output is None:
desired_output = (None, ) * n_dim
elif not hasattr(desired_output, '__len__'):
desired_output = (desired_output, ) * n_dim
if not hasattr(poolings[0], '__len__'):
poolings = [[p, ] * n_dim for p in poolings]
if not hasattr(filters[0], '__len__'):
filters = [[f, ] * n_dim for f in filters]
if not hasattr(MFP[0], '__len__'):
MFP = [[m, ] * n_dim for m in MFP]
assert len(MFP) == len(filters)
filters = [list(l) for l in zip(*filters)]
poolings = [list(l) for l in zip(*poolings)]
MFP = [list(l) for l in zip(*MFP)]
calcs = []
for f, p, d, o, mfp in zip(filters, poolings, desired_input, desired_output, MFP):
c = _CNNCalculator(f, p, d, mfp, force_center, o)
calcs.append(c)
return _multiCNNCalculator(calcs)
[docs]def initWeights(shape, scale='glorot', mode='normal', pool=None):
if len(shape) == 1:
n_in = shape[0]
if len(shape) == 2:
n_in, n_out = shape[0], shape[1]
elif len(shape) == 4:
n_in = np.float(np.prod(shape[1:]))
n_out = np.float((shape[0] * np.prod(shape[2:]) / np.prod(pool)))
elif len(shape) == 5:
n_in = np.float(np.prod(shape[1:]))
n_out = np.prod(shape[0:2]) * np.prod(shape[3:]) / np.prod(pool)
if mode == 'const':
W = np.ones(shape) * scale
elif mode == 'rnn':
assert (shape[0] == shape[1])
W = np.random.uniform(-1.0, 1.0, size=shape)
U, s, V = np.linalg.svd(W)
#W = U
W = W / s[0] ###TODO which is better?
elif mode == 'fix-uni':
W = np.random.uniform(-scale, scale, shape)
elif scale == 'glorot':
W_scale = np.sqrt(2.0 / (n_in + n_out))
if mode == 'normal':
W = np.random.normal(0, W_scale, shape)
elif mode == 'uni':
W = np.random.uniform(-W_scale, W_scale, shape)
else:
raise ValueError("Invalid weigh initialisation parameters")
return W
if __name__ == "__main__":
print "Testing CNNCalculator"
desired_input = [
180, 180, 30
] # (*) <int> or <2/3-tuple> in (x,y)/(x,y,z)-order for anisotropic CNN
filters = [[6, 6, 1],
[4, 4, 4],
[4, 4, 4],
[4, 4, 4],
] #[4,4,1], [2,2,4], [2,2,4], [2,2,2], [1,1,1]] # [1,1,1]
pool = [[2, 2, 1],
[2, 2, 2],
[2, 2, 1],
[1, 1, 1],
] # [1,1,1], [1,1,1], [1,1,2], [1,1,1], [1,1,1]] # [1,1,1]
MFP = [True, ] * 3 + [False, ] * 1
n_dim = 3
d = CNNCalculator(filters,
pool,
desired_input,
MFP=MFP,
force_center=False,
desired_output=None,
n_dim=n_dim)
print d